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Commonly, normal diffusive behavior is characterized by a linear dependence of the second central moment
on time, �x2�t��� t, while anomalous behavior is expected to show a different time dependence, �x2�t��� t� with
��1 for subdiffusive and ��1 for superdiffusive motions. Here we explore in details the fact that this kind of
qualification, if applied straightforwardly, may be misleading: there are anomalous transport motions revealing
perfectly “normal” diffusive character ��x2�t��� t� yet being non-Markov and non-Gaussian in nature. We use
recently developed framework of Monte Carlo simulations which incorporates anomalous diffusion statistics in
time and space and creates trajectories of such an extended random walk. For special choice of stability indices
describing statistics of waiting times and jump lengths, the ensemble analysis of anomalous diffusion is shown
to hide temporal memory effects which can be properly detected only by examination of formal criteria of
Markovianity �fulfillment of the Chapman-Kolmogorov equation�.
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I. INTRODUCTION

Usually various types of diffusion processes are classified
by analysis of the spread of the distance traveled by a ran-
dom walker. If the mean-square displacement grows like
��x−x�0��2�� t� with ��1, the motion is called subdiffusive,
in contrast to normal ��=1� or superdiffusive ���1� situa-
tions. For a free Brownian particle moving in one dimension,
a stochastic random force entering its equation of motion is
assumed to be composed of a large number of independent
identical pulses. If they posses a finite variance, then by vir-
tue of the standard central limit theorem �CLT� the distribu-
tion of their sum follows the Gaussian statistics. However, as
it has been proved by Lévy and Khintchine, the CLT can be
generalized for independent identically distributed �iid� vari-
ables characterized by nonfinite variance or even nonfinite
mean value. With a Lévy forcing characterized by a stability
index ��2 independent increments of the particle position
sum up yielding ��x−x�0��2�� t2/� �1�, see below. Such en-
hanced, fast superdiffusive motion is observed in various real
situations when a test particle is able to perform unusually
long jumps �2–4�. Lévy flights have been documented to
describe motion of fluorescent probes in living polymers,
tracer particles in rotating flows, and cooled atoms in laser
fields. They serve also as a paradigm of efficient searching
strategies �5–7� in social and environmental problems with
some level of controversy �8�.

In contrast, transport in porous, fractal-like media or re-
laxation kinetics in inhomogeneous materials are usually ul-
traslow, i.e., subdiffusive �4,9,10�. The most intriguing situ-
ations take place however, when both effects—occurrence of
long jumps and long waiting times for the next step—are
incorporated in the same scenario �11�. The approach to this
kind of anomalous motion is provided by continuous time
random walks �CTRWs� which assume that the steps of the

walker occur at random times generated by a renewal pro-
cess. In particular, a mathematical idealization of a free
Brownian motion �Wiener process W�t�� can be then derived
as a limit �in distribution� of iid random �Gaussian� jumps
taken at infinitesimally short time intervals of nonrandom
length. Other generalizations are also possible, e.g., W�t� can
be defined as a limit of random Gaussian jumps performed at
random Poissonian times. The characteristic feature of the
Gaussian Wiener process is the continuity of its sample
paths. In other words, realizations �trajectories� of the Wiener
process are continuous �although nowhere differentiable�
�12�. The process is also self-similar �scale invariant� which
means that by rescaling t�=�t and W��t�=�−1/2W��t� another
Wiener process with the same properties is obtained. Among
scale invariant stable processes, the Wiener process is the
only one which possesses finite variance �12–15�. Moreover,
since the correlation function of increments �W�s�=W
�t+s�−W�t� depends only on time difference s and incre-
ments of nonoverlapping times are statistically independent,
the formal differentiation of W�t� yields a white memoryless
Gaussian process �16�:

Ẇ�t� = ��t�, ���t���t��� = ��t − t�� , �1�

commonly used as a source of idealized environmental
noises within the Langevin description

dX�t� = f�X�dt + dW�t� . �2�

Here f�X� stands for the drift term which in the case of a
one-dimensional overdamped motion is directly related to
the potential V�X�, i.e., f�X�=−dV�X� /dX.

In more general terms the CTRW concept may asymptoti-

cally lead to non-Markov space-time fractional noise �̃�t�,
and in effect, to space-time fractional diffusion. For example,

let us define �W̃�t���X�t�=�i=1
N�t�Xi, where the number of

summands N�t� is statistically independent from Xi and gov-
erned by a renewal process �i=1

N�t�Ti	 t��i=1
N�t�+1Ti with t�0.

Let us assume further that Ti, Xi belong to the domain of
attraction of stable distributions, Ti	S
,1 and Xi	S�,�,
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whose corresponding characteristic functions ��k�
= �exp�ikS�,���=
−

 eikxl�,��x ;��dx, with the density
l�,��x ;��, are given by

��k� = exp�− ���k��1 − i� sign k tan
��

2
�� �3�

for ��1 and

��k� = exp�− ��k�1 + i�
2

�
sign k log�k��� �4�

for �=1. Here the parameter �� �0,2� denotes the stability
index, yielding the asymptotic long tail power law for the x
distribution, which for ��2 is of the �x�−�1+�� type. The pa-
rameter � ��� �0,�� characterizes the scale whereas �
��� �−1,1�� defines an asymmetry �skewness� of the distri-
bution.

Note that for 0�
�1, �=1, the stable variable S
,1 is
defined on positive semi-axis. Within the above formulation
the counting process N�t� satisfies

lim
t→

Prob� N�t�
�t/c�
 � x�

= lim
t→

Prob� �
i=1

��t/c�
x�

Ti � t�
= lim

n→
Prob��

i=1

�n�

Ti �
cn1/


x1/
 �
= lim

n→
Prob� 1

cn1/
�
i=1

�n�

Ti �
1

x1/
�
= 1 − L
,1�x−1/
� , �5�

where ��t /c�
x� denotes the integer part of the number
�t /c�
x and L�,��x� stands for the stable distribution of ran-
dom variable S�,�, i.e., l�,��x�=dL�,��x� /dx. Moreover, since

lim
n→

Prob� 1

c1n1/��
i=1

n

Xi � x�→ L�,��x� �6�

and

p�x,t� = �
n

p�x�n�pn�n�t�� , �7�

asymptotically one gets

p�x,t� 	 �c2t�−
/��
0



l�,���c2t�−
/�x�
/��l
,1����
/�d� , �8�

where c1 and c2 are constants. The resulting �in general non-
Markov� process becomes 
 /� self-similar Lévy random
walk �3,14,17–22�, i.e.,

p�x,t� = t−
/�p�xt−
/�,1� . �9�

The asymptotic form given by Eq. �8� can be easily de-
rived �14,20,23,24� for decoupled CTRW by applying Taub-
erian theorems to the Montroll-Weiss �25� expression

p�q,u� = �
0



dt�
−

+

dxe−ut+iqxp�x,t� =
1 − ��u�

u

1

1 − w�q���u�

�10�

for the Laplace-Fourier transform of p�x , t�. The latter satis-
fies the integral �master� equation

p�x,t� = ��x��1 − �
0

t

��t�dt� + �
0

t

��t − s�

���
−



w�x − y�p�y,t�dy�ds . �11�

Here ��t� stands for a waiting time probability density func-
tion �PDF�, whereas w�x� denotes a jump length PDF. With a
suitable change in time and space variables, in the limit of
x→, t→, the Laplace-Fourier transform p�q ,u� can be
written as

p�q,u� =
u
−1

u
 + �q��
= u
−1�

0



ds exp�− s�u
 + �q���� .

�12�

The inverse Laplace transform of p�q ,u� can be expressed in
a series form �14�:

p�q,t� =
1

2�i
�

c−

c+

p�q,u�eutdu

= �
k=0


�− 1�k

��k
 + 1�
��q��t
�k

= E
�− �q��t
� , �13�

where E
�z� is the Mittag-Leffler function of order 


E
�z� = �
k=0


zk

��k
 + 1�
. �14�

Further application of the inverse Fourier transform in q
yields �14� a final series representation of p�x , t�:

p�x,t� =
1

��y�t
/��
k=0


�− 1�k

�y�k�

��k� + 1�
��k
 + 1�

cos��

2
�k� + 1�� ,

�15�

where y=x / t
/�. The above series are divergent for ��
.
However, for �=
, the summation has been shown �14� to
produce the closed analytical formula

p�x,t� =
1

��y�t
sin��
/2�

�y�
 + �y�−
 + 2 cos��
/2�
, �16�

where �as previously� y=x / t
/�.
The exact solution of the decoupled CTRW, as given by

the infinite sum Eq. �7� of stable probability densities, has
been studied by Barkai �20� based on a special choice of
PDFs w�x� and ��t�. In particular, in �20� the extremely slow
convergence of certain CTRW solutions to the �fractional�
diffusion approximation has been discussed. The rigorous
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proof of equivalence between some classes of CTRWs and
fractional diffusion has been given by Hilfer and Anton �26�

In this paper we investigate CTRW scenarios which, in an
asymptotic limit, yield paradoxical diffusion, i.e., the non-
Markovian superdiffusive process taking place under sublin-
ear operational time. The combination of long flights and
long breaks between them is responsible for the characteris-
tic shape of the PDF and scaling properties of moments. In
particular, for �=2
, the paradoxical diffusion process ex-
hibits the same scaling as an ordinary Brownian motion de-
spite its PDF is significantly different from Gaussian.

In a forthcoming section, the relation between fractional
calculus and CTRW approach is briefly reminded and the
experimental results based on numerical PDF estimators are
presented. Section III is devoted to the discussion of scaling
properties of moments. In Sec. IV detection and analysis of
memory effects in empirical series of the CTRW-type real-
izations are proposed and critically tested.

II. RELATION BETWEEN CTRW AND FRACTIONAL
CALCULUS

The theory of stochastic integration of a corresponding
Ito-Langevin equation with respect to a general CTRW

“measure” dW̃�t�=dX has been developed in a series of pa-
pers �23,24,27,28�. Here, we study statistical properties of
such a motion constrained to the initial position X�0�=0. To
achieve the goals, we adhere to the scheme of stochastic
subordination �28–30�, i.e., we obtain the process of primary

interest X�t� as a function X�t�= X̃�St� by randomizing the
time clock of the process X�s� using a different clock St. In
this approach St stands for 
-stable subordinator, St
=inf�s :U�s�� t�, where U�s� denotes a strictly increasing

-stable process whose distribution L
,1 yields a Laplace

transform �e−kU�s��=e−sk

. The parent process X̃�s� is com-

posed of increments of symmetric �-stable motion described
in an operational time s

dX̃�s� = − V��X̃�s��ds + dL�,0�s� , �17�

and in every jump moment the relation U�St�= t is fulfilled.
The �inverse-time� subordinator St is �in general� non-
Markovian hence, as it will be shown, the diffusion process

X̃�St� possesses also some degree of memory. The above
setup has been recently proved �28–30� to give a proper sto-
chastic realization of the random process described otherwise
by a fractional diffusion equation:

�p�x,t�
�t

= 0Dt
1−
� �

�x
V��x� +

��

� �x���p�x,t� , �18�

with the initial condition p�x ,0�=��x�. In the above equation

0Dt
1−
 denotes the Riemannn-Liouville fractional derivative

0Dt
1−
= �

�t 0Dt
−
 defined by the relation

0Dt
1−
f�x,t� =

1

��
�
�

�t
�

0

t

dt�
f�x,t��

�t − t��1−
 �19�

and �� /��x�� stands for the Riesz fractional derivative with

the Fourier transform F���f�x� /��x���=−�k�� f̂�x�. Equation

�18� has been otherwise derived from a generalized master
equation �31�. The formal solution to Eq. �18� can be written
�31� as

p�x,t� = E
� �

�x
V��x� +

��

� �x���t
�p�x,0� . �20�

For processes with survival function ��t�=1−
0
t ����d� �cf.

Eq. �11�� given by the Mittag-Leffler function �Eq. �14��, this
solution takes an explicit form �14,23,24,31,32�

p�x,t� = �
n=0


t
n

n!
E


�n��− t
�wn�x� , �21�

where E

�n��z�= dn

dzn E
�z� and wn�x�� l�,0�x�, see �23,33�.
In this paper, instead of investigating properties of an ana-

lytical solution to Eq. �18�, we switch to a Monte Carlo
method �28–30,34,35� which allows generating trajectories

of the subordinated process X�t� with the parent process X̃�s�
in the potential free case, i.e., for V�x�=0. The assumed al-
gorithm provides means to examine the competition between
subdiffusion �controlled by a 
 parameter� and Lévy flights
characterized by a stability index �. From the ensemble of
simulated trajectories the estimator of the density p�x , t� is
reconstructed and statistical quantifiers �such as quantiles�
are derived and analyzed.

As mentioned, the studied process is 
 /� self-similar �cf.
Eq. �9��. We further focus on examination of a special case
for which 
 /�=1 /2. As an exemplary values of model pa-
rameters we choose 
=1, �=2 �Markovian-Brownian diffu-
sion� and 
=0.8, �=1.6 �subordination of non-Markovian
subdiffusion with Lévy flights�. Additionally we use 

=1, �=1.6 and 
=0.8, �=2 as Markovian and non-
Markovian counterparts of main cases analyzed. Figure 1
compares trajectories for all exemplary values of 
 and �.
Straight horizontal lines �for 
=0.8� correspond to particle
trapping while straight vertical lines �for �=1.6� correspond
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FIG. 1. �Color online� Sample trajectories for 
=1, �=2 �left
top panel �a��, 
=0.8, �=2 �right top panel �b��, 
=1, �=1.6 �left
bottom panel �c��, and 
=0.8, �=1.6 �right bottom panel �d��.
Equation �17� was numerically approximated by subordination
techniques with the time step of integration �t=10−2 and averaged
over N=106 realizations.
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to Lévy flights. The straight lines manifest anomalous char-
acter of diffusive process.

To further verify correctness of the implemented version
of the subordination algorithm �29�, we have performed ex-
tensive numerical tests. In particular, some of the estimated
probability densities have been compared with their analyti-
cal representations and the perfect match between numerical
data and analytical results have been found. Figure 2 dis-
plays numerical estimators of PDFs and analytical results for

=1 with �=2 �Gaussian case, left top panel �a��, 
=1 with
�=1 �Cauchy case, right top panel �b��, 
=1 /2 with �=1
�left bottom panel �c��, and 
=2 /3 with �=2 �right bottom
panel �d��. For those last two cases, the expressions for
p�x , t� has been derived �14�, starting from the series repre-
sentation given by Eq. �15�. For 
=1 /2, �=1 the appropri-
ate formula reads

p�x,t� = −
1

2�3/2�t
exp x2

4t
�Ei−

x2

4t
� , �22�

while for 
=2 /3, �=2 the probability density is

p�x,t� =
32/3

2t1/3Ai� �x�
�3t�1/3� , �23�

where Ei�x� and Ai�x� are the integral exponential function
and the Airy function, respectively. We have also compared
results of simulations and Eq. �16� for other sets of param-
eters 
, �. Also there, the excellent agreement has been de-
tected �results not shown�.

Figure 3 and 4 display time-dependent probability densi-
ties p�x , t� and corresponding cumulative distribution func-
tions �CDF�x , t�=
−

x p�x� , t�dx�� for “short” and for, ap-
proximately, an order of magnitude “longer” times. The
persistent cusp �36� located at x=0 is a finger print of the
initial condition p�x ,0�=��x� and is typically recorded for
subdiffusion induced by the subordinator St with 
�1. For
Markov Lévy-Wiener process �37,38� for which the charac-
teristic exponent 
=1, the cusp disappears and PDFs of the

process X̃�St� become smooth at x=0. In particular, for the
Markovian Gaussian case �
=1, �=2� corresponding to a
standard Wiener diffusion, PDF perfectly coincides with the
analytical normal density N�0,�t�.
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FIG. 2. �Color online� PDFs for 
=1 with �=2 �left top panel
�a��, 
=1 with �=1 �right top panel �b��, 
=1 /2 with �=1 �left
bottom panel �c��, and 
=2 /3 with �=2 �right bottom panel �d��.
Equation �17� was numerically approximated by subordination
techniques with the time step of integration �t=10−3 and averaged
over N=106 realizations. Points along with thick color lines repre-
sent numerical solution. Thin solid black lines present theoretical
densities: Gaussian �left top panel �a��, Cauchy �right top panel �b��,
and the p�x , t� given by Eqs. �22� �left bottom panel �c�� and Eq.
�23� �right bottom panel �d��. Analytical and numerical solutions are
superimposed. Note the semilogarithmic scale in the bottom panels.
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FIG. 3. �Color online� PDFs �top panels �a� and �b�� and 1
−CDF�x , t� �bottom panels �c� and �d�� at t=2 �left panels �a� and
�c��, t=15 �right panels �b� and �d��. Equation �17� was numerically
approximated by subordination techniques with the time step of
integration �t=10−3 and averaged over N=106 realizations. Solid
lines present theoretical asymptotic x−1.6 scaling representative for
�=1.6 and 
=1, i.e., for Markovian Lévy flight.
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FIG. 4. �Color online� PDFs �top panels �a� and �b�� and 1
−CDF�x , t� �bottom panels �c� and �d�� at t=2 �left panels �a� and
�c��, t=15 �right panels �b� and �d��. Equation �17� was numerically
approximated by subordination techniques with the time step of
integration �t=10−2 and averaged over N=106 realizations. Solid
lines present theoretical asymptotic x−1.2 scaling representative for
�=1.2 and 
=1, i.e., for Markovian Lévy flight.
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The presence of Lévy flights is also well visible in the
power-law asymptotic of CDF, see bottom panels of Figs. 3
and 4. Indeed, for ��2 independently of the actual value of
the subdiffusion parameter 
 and at arbitrary time, p�x , t�
� �x�−��+1� for x→. Furthermore, all PDFs are symmetric
with median and modal values located at the origin.

III. SCALING PROPERTIES OF MOMENTS

The 
 /� self-similar character of the process �cf. Eq. �9��
is an outcome of allowed long flights and long breaks be-
tween successive steps. In consequence, the whole distribu-
tion scales as a function of x / t
/� with the width of the dis-
tribution growing superdiffusively for ��2
 and
subdiffusively for ��2
. This t
/� scaling is also clearly
observable in the behavior of the standard deviation and
quantiles qp�t�, defined via the relation Prob�X�t�	qp�t��
= p, see Figs. 5 and 6. For random walks subject to superdif-

fusive long-ranging trajectories ��=1.6�, the asymptotic
scaling is observed for sufficiently long times, cf. Fig. 5. On
the other hand, normal �Gaussian� distribution of jumps su-
perimposed on subdiffusive motion of trapped particles
�
=0.8� clearly shows rapid convergence to the 
 /� law.
Notably, both sets 
=1, �=2 and 
=0.8, �=1.6 lead to
the same scaling t1/2, although in the case 
=0.8, �=1.6,

the process X�t�= X̃�St� is non-Markov, in contrast to a stan-
dard Gaussian diffusion obtained for 
=1, �=2. Thus, the
competition between subdiffusion and Lévy flights questions
standard ways of discrimination between normal �Markov,
��x−x�0��2�� t� and anomalous �generally, non-Markov
��x−x�0��2�� t�� diffusion processes.

Indeed, for 
=1, the process X�t� is not only 1 /� self-
similar but it is also memoryless �i.e., Markovian�. In such a
case, the asymptotic PDF p�x , t� is �-stable �13,37,39,40�
with the scale parameter � growing with time like t1/�, cf.
Eq. �3�. This is no longer true for subordination with 
�1
when the underlying process becomes non-Markovian and
the spread of the distribution follows the t
/� scaling �cf. Fig.
6, right panels�.

Some additional care should be taken when discussing the
scaling character of moments of p�x , t� �1,32,41�. Clearly,
Lévy distribution �with ��2� of jump lengths leads to infi-
nite second moment �see Eqs. �3� and �4��

�x2� = �
−



x2l�,��x;��dx =  , �24�

irrespectively of time t. Moreover, the mean value �x� of
stable variables is finite for ��1 only ��x�=0 for symmetric
case under investigation�. Those observations seem to con-
tradict demonstration of the scaling visible in Fig. 5 where
standard deviations derived from ensembles of trajectories
are finite and grow in time according to a power law. A nice
explanation of this behavior can be given following argu-
mentation of Bouchaud and Georges �1�: every finite but
otherwise arbitrarily long trajectory of a Lévy flight, i.e., the
stochastic process underlying Eq. �18� with 
=1, is a sum of
finite number of independent stable random variables.
Among all summed N stable random variables there is the
largest one, let say lc�N�. The asymptotic form of a stable
densities

l�,��x;�� � �x�−�1+��, �25�

together with the estimate for lc�N� allow one to estimate
how standard deviations grows with a number of jumps N. In
fact, the largest value lc�N� can be estimated from the
condition

N�
lc�N�



l�,��x�dx � 1, �26�

which locates most of the “probability mass” in events not
exceeding the step length lc �otherwise, the relation states
that lc�N� occurred at most once in N trials �1��. Alterna-
tively, lc�N� can be estimated as a value which maximizes
probability that the largest number chosen in N trials is lc
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FIG. 5. �Color online� Time dependence of var�x� / t. Straight
lines present t2
/�−1 theoretical scaling �see Eq. �30� and explanation
in the text�. Simulation parameters as in Fig. 1.
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FIG. 6. �Color online� Quantiles: q0.9, q0.8, q0.7, q0.6 �from top to
bottom� for 
=1, �=2 �left top panel �a��, 
=0.8, �=2 �right top
panel �b��, 
=1, �=1.6 �left bottom panel �c��, and 
=0.8, �
=1.6 �right bottom panel �d��. The straight line presents theoretical
t
/� scaling. Simulation parameters as in Fig. 1.
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l�,��lc���
0

lc

l�,��x�dx�N−1

= l�,��lc��1 − �
lc



l�,��x�dx�N−1

.

�27�

By use of Eqs. �26� and �25�, simple integration leads to

lc�N� � N1/�. �28�

Due to finite, but otherwise arbitrarily large number of trials
N, the effective distributions becomes restricted to the finite
domain which size is controlled by Eq. �28�. Using the esti-
mated threshold �see Eq. �28�� and asymptotic form of stable
densities �see Eq. �25��, it is possible to derive an estimate of
�x2�

�x2� � �lc

x2l�,��x�dx � �N1/��2−� = N2/�−1. �29�

Finally, after N jumps

�x2�N = N�x2� � N2/�. �30�

Consequently, for Lévy flights standard deviation grows like
a power law with the number of jumps N. In our CTRW
scenario incorporating competition between long rests and
long jumps, the number of jumps N=N�t� grows sublinearly
in time, N� t
, leading effectively to �x2�N� t2
/� with 0�

�1 and 0���2. Since in any experimental realization tails
of the Lévy distributions are almost inaccessible and there-
fore effectively truncated, analyzed sample trajectories fol-
low the pattern of the t
/� scaling, which is well documented
in Fig. 5.

IV. DISCRIMINATING MEMORY EFFECTS

Clearly, by construction, for 
�1 the limiting “anoma-
lous diffusion” process X�t� is non-Markov. This feature is
however nontransparent when discussing statistical proper-
ties of the process by analyzing ensemble-averaged mean-
square displacement for the parameters set 
 /�=1 /2, �e.g.,

=0.8, �=1.6� when contrary to what might be expected,
��x−x�0��2�� t, similarly to the standard Markov-Gaussian
case. This observation implies a different problem to be
brought about: given an experimental set of data, say time
series representative for a given process, how can one inter-
pret its statistical properties and conclude about anomalous
�subdiffusive� character of underlying kinetics? The similar
question has been carried out in a series of papers discussing
use of transport coefficients in systems exhibiting weak er-
godicity breaking �see �42� and references therein�.

To further elucidate the nature of simulated data sets for

 /�=1 /2, we have adhered to and tested formal criteria
�16,43–45� defining the Markov process. The standard for-
malism of space- and time-continuous Markov processes re-
quires fulfillment of the Chapman-Kolmogorov equation �t1
� t2� t3�

P�x1,t1�x3,t3� = �
x2

P�x1,t1�x2,t2�P�x2,t2�x3,t3� , �31�

along with the constraint for conditional probabilities which
for the memoryless process should not depend on its history.

In particular, for a hierarchy of times t1� t2� t3, the follow-
ing relation has to be satisfied:

P�x1,t1�x2,t2� = P�x1,t1�x2,t2,x3,t3� . �32�

Equations �31� and �32� have been used to directly verify
whether the process under consideration is of the Markovian
or non-Markovian type. From Eq. �31� squared cumulative
deviation Q2 between left-hand side and right-hand side of
the Chapman-Kolmogorov relation summed over initial �x3�
and final �x1� states has been calculated �43�

Q2 = �
x1,x3

�P�x1,t1�x3,t3� − �
x2

P�x1,t1�x2,t2�P�x2,t2�x3,t3��2
.

�33�

The same procedure can be applied to Eq. �32� leading to

M2 = �
x1,x2,x3

�P�x1,t1�x2,t2� − P�x1,t1�x2,t2,x3,t3��2. �34�

Figure 7 presents evaluation of Q2 �top panel� and M2

10-9

10-8

10-7

10-6

10-5

8 10 12 14 16 18 20 22 24 26 28

Q
2

t2

(a)

(b)

ν=1.0 α=2.0
ν=1.0 α=1.6
ν=0.8 α=2.0
ν=0.8 α=1.6

10-8

10-7

10-6

10-5

8 10 12 14 16 18 20 22 24 26 28

M
2

t2

(a)

(b)

ν=1.0 α=2.0
ν=1.0 α=1.6
ν=0.8 α=2.0
ν=0.8 α=1.6

FIG. 7. �Color online� Squared sum of deviations Q2 �see Eq.
�33�� �top panel �a�� and M2 �see Eq. �34�� �bottom panel �b�� for
t1=27, t3=6 as a function of the intermediate time t2. Two-
dimensional �2D� histograms were created on the �−10,10�2 do-
main. Three-dimensional �3D� histograms were created on the
�−10,10�3 domain. Due to nonstationary character of the studied
process the analysis is performed for the series of increments
x�t+1�−x�t�. Simulation parameters as in Fig. 1.
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�bottom panel� for t1=27 and t3=6 as a function of the in-
termediate time t2= �7,8 ,9 , . . . ,25,26�. It is seen that devia-
tions from the Chapman-Kolmogorov identity are well reg-
istered for processes with long rests when subdiffusion wins
competition with Lévy flights at the level of sample paths.
The tests based on Q2 �see Eq. �33�� and M2 �see Eq. �34��
have comparative character. The deviations Q2 and M2 are
about three order of magnitudes higher for the parameter sets

=0.8, �=2.0 and 
=0.8, �=1.6 than Q2 and M2 values
for the Markovian counterparts with 
=1 and �=2, �=1.6,
respectively. Performed analysis clearly demonstrates non-
Markovian character of the limiting diffusion process for 

�1 and the findings indicate that scaling of PDF, p�x , t�
= t−1/2p�xt−1/2 ,1� or, in consequence, scaling of the mean
square displacement ��x−x�0��2�� t and interquantile dis-
tances �see Fig. 6� do not discriminate satisfactory between
normal and anomalous diffusive motions �11�. In fact, linear
in time spread of the second moment does not necessarily
characterize normal diffusion process. Instead, it can be an
outcome of a special interplay between subdiffusion and

Lévy flights combined in the subordination X�t�= X̃�St�. The
competition between both processes is better displayed in
analyzed sample trajectories X�t� where combination of long
jumps and long trapping times can be detected �see Fig. 1�.

V. CONCLUSIONS

Summarizing by implementing Monte Carlo simulations
which allow visualization of stochastic trajectories subjected
to subdiffusion �via time-subordination� and superdiffusive
Lévy flights �via extremely long jumps in space�, we have
demonstrated that the standard measure used to discriminate

between anomalous and normal behavior cannot be applied
straightforwardly. The mean square displacement alone as
derived from the �finite� set of time-series data does not pro-
vide full information about the underlying system dynamics.
In order to get proper insight into the character of the mo-
tion, it is necessary to perform analysis of individual trajec-
tories. Subordination which describes a transformation be-
tween a physical time and an operational time of the system
�29,46� is responsible for unusual statistical properties of
waiting times between subsequent steps of the motion. In
turn, Lévy flights are registered in instantaneous long jumps
performed by a walker. Superlinear or sublinear character of
the motion in physical time is dictated by a coarse-graining
procedure, in which fractional time derivative with the index

 combines with a fractional spatial derivative with the index
�. Such situations may occur in motion on random potential
surfaces where the presence of vacancies and other defects
introduces both—spatial and temporal disorders �47�. We be-
lieve that the issue of the interplay of superdiffusion and
subdiffusion with a crossover resulting in a pseudonormal
paradoxical diffusion may be of special interest in the con-
text of, e.g., facilitated target location of proteins on folding
heteropolymers �48� or in analysis of single particle tracking
experiments �42,49–51�, where the hidden subdiffusion pro-
cess can be masked and appear as a normal diffusion.
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